
1Copyright 2006 by Pearson Education

Building Java ProgramsBuilding Java Programs

Chapter 2: Primitive Data
and Definite Loops

2Copyright 2006 by Pearson Education

Lecture outline

�managing complexity

� variable scope

� class constants

� drawing complex figures with for loops

3Copyright 2006 by Pearson Education

reading: 2.4 - 2.5

Drawing complex figuresDrawing complex figures

4Copyright 2006 by Pearson Education

Drawing complex figures
� Write a program that produces the following output.

� Use nested for loops to capture the repetition.

#================#

| <><> |
| <>....<> |

| <>........<> |

|<>............<>|

|<>............<>|
| <>........<> |

| <>....<> |

| <><> |

#================#

5Copyright 2006 by Pearson Education

Drawing complex figures
� When the task is as complicated as this one, it may help
to write down steps on paper before we write our code:

� 1. A pseudo-code description of the algorithm (written in English)

� 2. A table of each line's contents, to help see the pattern in the input

#================#

| <><> |
| <>....<> |

| <>........<> |

|<>............<>|

|<>............<>|
| <>........<> |

| <>....<> |

| <><> |

#================#

6Copyright 2006 by Pearson Education

Pseudo-code
� pseudo-code: A written English description of an
algorithm to solve a programming problem.

� Example: Suppose we are trying to draw a box of stars
on the screen which is 12 characters wide and 7 tall.

� A possible pseudo-code for this algorithm:

print 12 stars.

for (each of 5 lines) {

print a star.

print 10 spaces.

print a star.

}

print 12 stars.

* *
* *
* *
* *
* *

7Copyright 2006 by Pearson Education

A pseudo-code algorithm
� A possible pseudo-code for our complex figure task:

1. Draw top line with # , 16 =, then #

2. Draw the top half with the following on each line:
|

spaces (decreasing in number as we go downward)

<>

dots (decreasing in number as we go downward)

<>

spaces (same number as above)

|

3. Draw the bottom half, which is the same
as the top half but upside-down

4. Draw bottom line with # , 16 =, then #

� Our pseudo-code suggests we should
use a table to learn the pattern in the
top and bottom halves of the figure.

#================#

| <><> |
| <>....<> |

| <>........<> |

|<>............<>|

|<>............<>|
| <>........<> |

| <>....<> |

| <><> |

#================#

8Copyright 2006 by Pearson Education

Tables to examine output
� A table of the contents of the lines in the "top half" of
the figure:

� What expressions connect each line with its number of spaces
and dots?

1204

823

442

061

dotsspacesline

#================#

| <><> |

| <>....<> |

| <>........<> |

|<>............<>|

|<>............<>|
| <>........<> |

| <>....<> |

| <><> |

#================#

0

2

4

6

line * -2 + 8

121204

8823

4442

0061

4 * line - 4dotsspacesline

9Copyright 2006 by Pearson Education

Implementing the figure
� Let's implement the code for this figure together.

� Some questions we should ask ourselves:

� How many loops do we need on each line of the top half of the
output?

� Which loops are nested inside which
other loops?

� How should we use static methods to
represent the structure and redundancy
of the output?

#================#

| <><> |
| <>....<> |

| <>........<> |

|<>............<>|

|<>............<>|
| <>........<> |

| <>....<> |

| <><> |

#================#

10Copyright 2006 by Pearson Education

Partial solution

// Prints the expanding pattern of <> for the top half of the figure.
public static void drawTopHalf() {

for (int line = 1; line <= 4; line++) {
System.out.print("|");

for (int space = 1; space <= (line * -2 + 8); space++) {
System.out.print(" ");

}

System.out.print("<>");

for (int dot = 1; dot <= (line * 4 - 4); dot++) {
System.out.print(".");

}

System.out.print("<>");

for (int space = 1; space <= (line * -2 + 8); space++) {
System.out.print(" ");

}

System.out.println("|");
}

}

11Copyright 2006 by Pearson Education

reading: 2.4

Scope and class Scope and class

constantsconstants

12Copyright 2006 by Pearson Education

Variable scope
� scope: The part of a program where a variable exists.

� A variable's scope is from its declaration to the end of the { }
braces in which it was declared.

� If a variable is declared in a for loop, it exists only in that loop.

� If a variable is declared in a method, it exists in that method.

public static void example() {
int x = 3;
for (int i = 1; i <= 10; i++) {

System.out.println(x);
}
// i no longer exists here

} // x ceases to exist here

x's scope

i's scope

13Copyright 2006 by Pearson Education

Scope and using variables
� It is illegal to use a variable outside of its scope.

public static void main(String[] args) {
example();
System.out.println(x); // illegal

for (int i = 1; i <= 10; i++) {
int y = 5;
System.out.println(y);

}
System.out.println(y); // illegal

}

public static void example() {
int x = 3;
System.out.println(x);

}

14Copyright 2006 by Pearson Education

Overlapping scope
� It is legal to declare variables with the same name, as
long as their scopes do not overlap:

public static void main(String[] args) {
int x = 2;

for (int i = 1; i <= 5; i++) {
int y = 5;
System.out.println(y);

}
for (int i = 3; i <= 5; i++) {

int y = 2;
int x = 4; // illegal
System.out.println(y);

}
}

public static void anotherMethod() {
int i = 6;
int y = 3;
System.out.println(i + ", " + y);

}

15Copyright 2006 by Pearson Education

Problem: redundant values
� magic number: A value used throughout the program.

� Magic numbers are bad; what if we have to change them?

� A normal variable cannot be used to fix the magic number
problem, because its scope is not large enough.

public static void main(String[] args) {
int max = 3;
printTop();
printBottom();

}

public static void printTop() {
for (int i = 1; i <= max; i++) { // ERROR: max not found

for (int j = 1; j <= i; j++) {
System.out.print(j);

}
System.out.println();

}
}

public static void printBottom() {
for (int i = max; i >= 1; i--) { // ERROR: max not found

for (int j = i; j >= 1; j--) {
System.out.print(max); // ERROR: max not found

}
System.out.println();

}
}

16Copyright 2006 by Pearson Education

Class constants
� class constant: A named value that can be seen
throughout the program.

� The value of a constant can only be set when it is declared.

� It can not be changed while the program is running.

� Class constant syntax:
public static final <type> <name> = <value> ;

� Constants' names are usually written in ALL_UPPER_CASE.

� Examples:

public static final int DAYS_IN_WEEK = 7;

public static final double INTEREST_RATE = 3.5;

public static final int SSN = 658234569;

17Copyright 2006 by Pearson Education

Class constant example
� Making the 3 a class constant removes the redundancy:

public static final int MAX_VALUE = 3;

public static void main(String[] args) {
printTop();
printBottom();

}

public static void printTop() {
for (int i = 1; i <= MAX_VALUE; i++) {

for (int j = 1; j <= i; j++) {
System.out.print(j);

}
System.out.println();

}
}

public static void printBottom() {
for (int i = MAX_VALUE; i >= 1; i--) {

for (int j = i; j >= 1; j--) {
System.out.print(MAX_VALUE);

}
System.out.println();

}
}

18Copyright 2006 by Pearson Education

Constants and figures
� Consider the task of drawing the following figures:

+/\/\/\/\/\+
| |
+/\/\/\/\/\+

+/\/\/\/\/\+
| |
| |
| |
| |
| |
+/\/\/\/\/\+

� Each figure is strongly tied to the number 5
(or a multiple of 5, such as 10 ...)

� Use a class constant so that these figures will be resizable.

19Copyright 2006 by Pearson Education

Repetitive figure code
� Note the repetition of numbers based on 5 in the code:

public static void drawFigure1() {
drawPlusLine();
drawBarLine();
drawPlusLine();

}

public static void drawPlusLine() {
System.out.print("+");
for (int i = 1; i <= 5; i++) {

System.out.print("/\\");
}
System.out.println("+");

}

public static void drawBarLine() {
System.out.print("|");
for (int i = 1; i <= 10; i++) {

System.out.print(" ");
}
System.out.println("|");

}

� It would be cumbersome to resize the figure.

Output:

+/\/\/\/\/\+
| |
+/\/\/\/\/\+

20Copyright 2006 by Pearson Education

Fixing our code with constant
� A class constant will fix the "magic number" problem:

public static final int FIGURE_WIDTH = 5;

public static void drawFigure1() {
drawPlusLine();
drawBarLine();
drawPlusLine();

}

public static void drawPlusLine() {
System.out.print("+");
for (int i = 1; i <= FIGURE_WIDTH; i++) {

System.out.print("/\\");
}
System.out.println("+");

}

public static void drawBarLine() {
System.out.print("|");
for (int i = 1; i <= 2 * FIGURE_WIDTH; i++) {

System.out.print(" ");
}
System.out.println("|");

}

Output:

+/\/\/\/\/\+
| |
+/\/\/\/\/\+

21Copyright 2006 by Pearson Education

Complex figure w/ constant
� Modify the code from the previous slides to use a
constant so that it can show figures of different sizes.

� The figure originally shown has a size of 4.

#================#

| <><> |

| <>....<> |
| <>........<> |

|<>............<>|

|<>............<>|

| <>........<> |

| <>....<> |
| <><> |

#================#

A figure of size 3:

#============#

| <><> |
| <>....<> |

|<>........<>|

|<>........<>|

| <>....<> |

| <><> |
#============#

22Copyright 2006 by Pearson Education

Loop tables and constant
� Let's modify our loop table to take into account SIZE

� Adding the constant sometimes changes the b in y = mx + b

#================#
| <><> | #============#
<>....<>		<><>
<>........<>		<>....<>
<>............<>		<>........<>
<>............<>		<>........<>
<>........<>		<>....<>
<>....<>		<><>
<><>	#============#	
#================#

3

4

SIZE

1,2,3

1,2,3,4

line

0,4,84,2,0

0,4,8,126,4,2,0

dotsspaces

3

4

SIZE

1,2,3

1,2,3,4

line

-2*line + 6

-2*line + 8

4*line - 40,4,84,2,0

4*line - 40,4,8,126,4,2,0

dotsspaces

3

4

SIZE

1,2,3

1,2,3,4

line

-2*line + 6

-2*line + 8

-2*line + (2*SIZE)

4*line - 40,4,84,2,0

4*line - 40,4,8,126,4,2,0

4*line - 4dotsspaces

23Copyright 2006 by Pearson Education

Partial solution
public static final int SIZE = 4;

// Prints the expanding pattern of <> for the top half of the figure.
public static void drawTopHalf() {

for (int line = 1; line <= SIZE; line++) {
System.out.print("|");

for (int space = 1; space <= (line * -2 + (2 * SIZE)); space++) {
System.out.print(" ");

}

System.out.print("<>");

for (int dot = 1; dot <= (line * 4 - 4); dot++) {
System.out.print(".");

}

System.out.print("<>");

for (int space = 1; space <= (line * -2 + (2 * SIZE)); space++) {
System.out.print(" ");

}

System.out.println("|");
}

}

24Copyright 2006 by Pearson Education

Observations about constant
� Adding a constant often changes the amount added
(the intercept) in a loop expression.

� Usually the multiplier (slope) is unchanged.

public static final int SIZE = 4;

for (int space = 1; space <= (line * -2 + (2 * SIZE)); space++) {

System.out.print(" ");

}

� The constant doesn't replace every occurrence of the
original value.
for (int dot = 1; dot <= (line * 4 - 4); dot++) {

System.out.print(".");

}

25Copyright 2006 by Pearson Education

Another complex figure
� Write a program that produces the following output.

� Write nested for loops to capture the repetition.

� Use static methods to capture structure and redundancy.

====+====
|
|
|
====+====
|
|
|
====+====

� After implementing the program, add a constant so that
the figure can be resized.

