Chapter 2: Primitive Data
and Definite Loops

Copyright 2006 by Pearson Education

Lecture outline

= Managing complexity
= Variable scope
» class constants

= drawing complex figures with f or loops

=3}

~_ Copyright 2006 by Pearson Education 2

—

| s
Copyright 2006 by Pearson Education

Drawing complex figures

= Write a program that produces the following output.
= Use nested f or loops to capture the repetition.

~_ Copyright 2006 by Pearson Education 4

—

Drawing complex figures

= When the task is as complicated as this one, it may help

to write down steps on paper before we write our code:
= 1. A pseudo-code description of the algorithm (written in English)
= 2. A table of each line's contents, to help see the pattern in the input

—

; Copyright 2006 by Pearson Education 5

—

= pseudo-code: A written English description of an
algorithm to solve a programming problem.

« Example: Suppose we are trying to draw a box of stars
on the screen which is 12 characters wide and 7 tall.
= A possible pseudo-code for this algorithm:

print 12 stars.

for (each of 5 lines) { REXIHI IR TAAR
print a star.
print 10 spaces.
print a star.

/

print 12 stars.

* *
* *
* *
* *
* *
* *

kkhkkhkkikrkikkikk*k*k

—

~ Copyright 2006 by Pearson Education 6

—

—

A pseudo-code algorithm

= A possible pseudo-code for our complex figure task:

1. Draw top line with # , 16 =, then #

2. Draw the top half with the following on each line:

spaces (decreasing in number as we go downward)

<>

dots (decreasing in number as we go downward)
<>

spaces (same number as above)
|
3. Draw the bottom half, which is the same
as the top half but upside-down

4. Draw bottom line with # , 16 =, then #

= Our pseudo-code suggests we should
use a table to learn the pattern in the
top and bottom halves of the figure.

_ Copyright 2006 by Pearson Education

Tables to examine output

= A table of the contents of the lines in the "top half" of

the figure:
= What expressions connect each line with its number of spaces
and dots?
line |spaces |line*-2+8 |dots |4 *line -4
1 6 6 0 0 P
2 4 4 4 4 <><>
<>,...<>
3 2 2 8 8 <> ... <>
4 0 0 12 12 <> . <>
<> . <>
<> <>
<>,...<>
<>3<3>

—

~ Copyright 2006 by Pearson Education 8

—

Implementing the figure

= Let's implement the code for this figure together.

= Some questions we should ask ourselves:

« How many loops do we need on each line of the top half of the
output?

= Which loops are nested inside which
other loops? T "

= How should we use static methods to <><>
represent the structure and redundancy <> <>
of the output?

—

~ Copyright 2006 by Pearson Education 9

—

m

™

—

Partial solution

/1l Prints the expanding pattern of <> for the top half of the figure.

public static void drawTopHal f() {
for (int line = 1; line <= 4; |ine++) {
Systemout.print("]|");

for (int space = 1; space <= (line * -2 + 8); space++) {
Systemout.print(" ");
}

System out. print("<>");

for (int dot = 1; dot <= (line * 4 - 4); dot++) {
Systemout.print(".");
}

Systemout. print("<>");

for (int space = 1; space <= (line * -2 + 8); space++) {
Systemout.print(" ");
}

Systemout.printIn("|");

}

___ Copyright 2006 by Pearson Education

10

| s
Copyright 2006 by Pearson Education

Variable scope

= scope: The part of a program where a variable exists.

= A variable's scope is from its declaration to the end of the { }
braces in which it was declared.

« If @ variable is declared in a f or loop, it exists only in that loop.
»« If @ variable is declared in a method, it exists in that method.

public static void example() {

Int x = 3; .
for (int i =1; i <= 10; i++) { I'S SCOpe
System out. println(x); } X's scope

}

/1 1 no | onger exists here
} /] X ceases to exist here

—

~ Copyright 2006 by Pearson Education 12

—

Scope and using variables

= It is illegal to use a variable outside of its scope.

public static void main(String[] args) {

exanpl e();
Systemout.printin(x); [/ i1llegal
for (int i =1; i <= 10; i++) {
int y = 5;
Systemout.println(y),;
}
Systemout.printin(y); [/ i1llegal
}
public static void example() {
Int x = 3;
Systemout. println(x);
}

m

™

___ Copyright 2006 by Pearson Education

—

13

Overlapping scope

= [t is legal to declare variables with the same name, as
long as their scopes do not overlap:

public static void main(String[] args) {

Int X = 2;
for (int i =1; i <=5; i++) {
Iint y =5
Systemout.println(y);
}
for (int i =3; 1 <=05; i++) {
int y = 2;
int x =4, [/ illegal
Systemout.println(y);
}
}
public static void anot her Met hod() {
Int | = 6;
int y = 3;
Systemout.printin(i +", " +vYy),;
}

=2)

-

- Copyright 2006 by Pearson Education

—

14

—

Problem: redundant values

= magic nhumber: A value used throughout the program.
= Magic numbers are bad; what if we have to change them?

= A normal variable cannot be used to fix the magic number
problem, because its scope is not large enough.

public static void main(String[] args) {
I nt max = 3;
print Top();
printBottonm);

}

public static v0|d printTop() {
for (int i =1; i <= max; iI++) { /1 ERROR max not found
for (int j =1;] <=1; j++) {
Systemout.print(j);

} }Systemout.println();
}

public static v0|d prlntBottom() {
for (int i = max; 1 >= 1; -)
for (|ntj—|;j>—1'J-
System out . print (max) ; // ERROR: max not found

{ // ERROR: max not found

\ }Systemout.prlntln();

—:W}Copyright 2006 by Pearson Education 15

Class constants

= class constant: A named value that can be seen
throughout the program.
= The value of a constant can only be set when it is declared.
= It can not be changed while the program is running.

= Class constant syntax:
public static final <type> <name> = <value> ,;

= Constants' names are usually written in ALL_UPPER_CASE.

= Examples:
public static final 1nt DAYS | N WEEK = 7;
public static final double I NTEREST RATE = 3. 5;
public static final Int SSN = 658234569;

—

= P

~ Copyright 2006 by Pearson Education 16

—

=3}

—

Class constant example

= Making the 3 a class constant removes the redundancy:
public static final int MAX VALUE = 3;

public static void main(String[] args) {
print Top();
printBotton();

}
public static void printTop() {
for (int i = 1; i <= MAX_VALUE;, i++) {
for (int j =1;) <=1i; j++) {
Systemout.print(j);
}
Systemout.println();
}
}
public static void printBottom() {
for (int i = MAX_VALUE, i >=1; i--) {
for (int j =1i; j >=1; j--) {
System out . pri nt (MAX_VALUE) ;
}
Systemout.println();
}
}

~_ Copyright 2006 by Pearson Education

17

=2)

-

—

Constants and figures

= Consider the task of drawing the following figures:
JAVAYAVAVAR:

| |
ZAVAVAVAVAR:

s AVAVAVAWARE.

s AVAVAVAWARE.

« Each figure is strongly tied to the number 5
(or a multiple of 5, such as 10 ...)

= Use a class constant so that these figures will be resizable.

- Copyright 2006 by Pearson Education

18

Repetitive figure code

= Note the repetition of numbers based on 5 in the code:

public static void drawri gurel() {
dr awPl usLi ne() ;
drawBar Li ne() ;

\ dr awPl usLi ne(); Output:
public static void dravaIusL|ne() { S AVAVAVRAWAE
Systemout.print("+"); | |
for (int I =1, I <=05; i1++) {
Systemout.print("/\\");: Y AVAVAVAVAR:
\ }System out.println("+");

public static void drawBarLlne() {
Systemout.print("|");
for (int i =1; 1 <= 10, | ++) {
Systen1out print(" ");

\ Systemout.println("|");

. = It would be cumbersome to resize the figure.

"7 Copyright 2006 by Pearson Education 19

—

Fixing our code with constant

= A class constant will fix the "magic number" problem:

public static final int FI GURE WDTH = 5;

public static void drawki gurel() {
dr awPl usLi ne() ;
dr awBar Li ne() ;
dr awPl usLi ne() ;

}

public static void dravaI usLine() {
Systemout.print("+

for (int i =1; I <= FI GURE W DTH;

\ Systemout.print("/\\");

Systemout.println("+");

}

public static void drawBarLine() {
Syst em out . prlnt(| ") ;

for (int i =1; 1 <= D * FI GURE W DTH,;

Syst em out print(" ");
Systemout.println("|");

- Copyright 2006 by Pearson Education

—

I ++) {

Output:

I AVAVAVAWAR.

| |
AVAVAVAVAR

| ++) {

20

= Modify the code from the previous slides to use a
constant so that it can show figures of different sizes.

= The figure originally shown has a size of 4.

—

~ Copyright 2006 by Pearson Education

A figure of size 3:

Complex figure w/ constant

21

= i

—

Loop tables and constant

= Let's modify our loop table to take into account SI ZE
= Adding the constant sometimes changesthebin y=mx + b

~ Copyright 2006 by Pearson

Education

SIZE | line spaces |-2*line + (2*SlIZE) | dots 4*l'ine - 4
4 1,2,3,4/6,4,2,0 |-2*line + 8 0,4,8,12 | 4*line - 4
3 1,2,3 4,2,0 -2*line + 6 0,4,8 4*|line - 4
2 et
<> H==—========c=H
<>, <> <>3<>
<> <> <>, <>
<> .. <> <> <>
<> .. <> <> <>
<> <> <> ...<>
<>....<> <><3>
<><3> Ho==—==========H

22

Partial solution

public static final int SIZE = 4;

/1l Prints the expanding pattern of <> for the top half of the figure.
public static void drawlopHal f() {
for (int line =1; line <= SIZE;, |ine++) {
Systemout.print("|");

for (int space = 1; space <= (line * -2 + (2 * SIZE)); space++) {

Systemout.print(" ");
}

Systemout. print("<>");

for (int dot = 1; dot <= (line * 4 - 4); dot++) {
Systemout.print(".");
}

Systemout. print("<>");

for (int space = 1, space <= (line * -2 + (2 * SIZE)); space++) {
Systemout.print(" ");
}

Systemout.printin("|");

)

™

___ Copyright 2006 by Pearson Education 23

—

Observations about constant

= Adding a constant often changes the amount added
(the intercept) in a loop expression.
= Usually the multiplier (slope) is unchanged.

public static final int SIZE = 4,

for (int space = 1; space <= (line * -2 + (2 * SIZE)); space++) {
Systemout.print(" ");
}

= The constant doesn't replace every occurrence of the

original value.
for (int dot = 1; dot <= (line * 4 - 4); dot++) {
Systemout.print(".");
}

—

~ Copyright 2006 by Pearson Education 24

—

Another complex figure

= Write a program that produces the following output.
= Write nested f or loops to capture the repetition.

= Use static methods to capture structure and redundancy.

= After implementing the program, add a constant so that
the figure can be resized.

—

; Copyright 2006 by Pearson Education 25

—

